Light Clustering for Photorealistic Rendering

Norbert Bus

Department of Computer Science ESIEE Paris

June 13, 2013

Joint work with Nabil H. Mustafa and Venceslas Biri

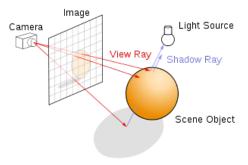
Photorealistic rendering

Scene

- objects (geometry, color)
- light sources

Rendering the image

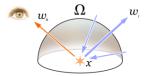
- shoot a ray from the camera through a pixel
- determine the color of the first hit point → shoot other rays to light sources



Rendering equation

Color for a surface point [J. T. Kajiya, SIGGRAPH '86]

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} f(x,\omega_i,\omega_o) L_i(x,\omega_i) \cos \theta_i d\omega_i$$
$$= \int_{\Omega} f(x,\omega_i,\omega_o) L_o(hit(x,\omega_i),\omega_i) \cos \theta_i d\omega_i$$



Approximating the solution with path tracing

- Simulate indirect illumination
- Place virtual point lights (VPLs)
- Shoot rays from original lights

• With S, the set of VPLs, the rendering equation

$$L(p,\omega_o) = \sum_{i \in S} V_i(p) f(p,\omega_i,\omega_o) I_i G_i(p,\omega_i)$$

• With S, the set of VPLs, the rendering equation

$$L(p,\omega_o) = \sum_{i \in S} V_i(p) f(p,\omega_i,\omega_o) I_i G_i(p,\omega_i)$$

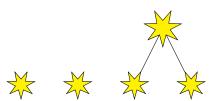
- ullet Good solution with $\approx 100000 \ {\rm VPLs}$
- Very expensive to calculate visibility
- How to speed it up?
- Cluster similar lights into groups and treat them as single lights

Preprocess

• Single VPLs

Preprocess

- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))



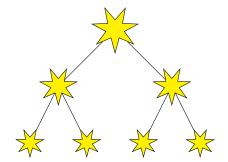
Preprocess

- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))



Preprocess

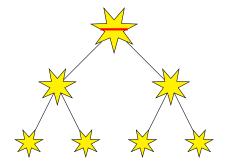
- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))



Preprocess

- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))

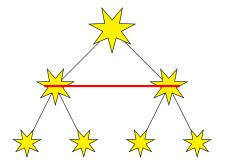
Query for one pixel



Preprocess

- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))

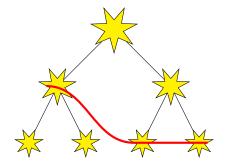
Query for one pixel



Preprocess

- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))

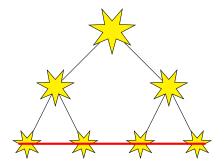
Query for one pixel



Preprocess

- Single VPLs
- Agglomerative clustering sim(a, b) = I(dist(a, b) + direction(a, b))

Query for one pixel



- Agglomerative clustering may be slow
- For each pixel we re-evaluate the optimal cut
- Too expensive

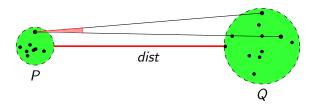
- Agglomerative clustering may be slow
- For each pixel we re-evaluate the optimal cut
- Too expensive
- Common cuts [Wang et al., SIGGRAPH Asia '11]

- Agglomerative clustering may be slow
- For each pixel we re-evaluate the optimal cut
- Too expensive
- Common cuts [Wang et al., SIGGRAPH Asia '11]
- Our intuition
- Structure that effectively captures all the different cuts

Definition

Two point sets, P and Q are well-separated for a fixed $\epsilon > 0$ if

 $max(diam(P), diam(Q)) < \epsilon \cdot dist(P, Q)$



Bounds the angles and distances which is important for lights This enables us to bound the error of light clustering

Definition

A well-separated pair decomposition (WSPD) of a point set, P is a set of pairs

$$W = \{(A_1, B_1), \dots (A_s, B_s)\}, \qquad A_i, B_i \subset P$$

such that:

• for $\forall p, q \in P$ there exists exactly one *i* such that $(p, q) \in (A_i, B_i)$

2 A_i, B_i is well-separated for $\forall i$

Example: $W = \{(p,q) | p, q \in P\}$, size of $O(n^2)$

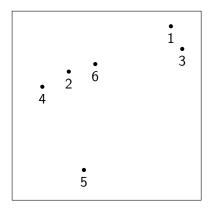
Theorem

For $\epsilon > 0$, $P \subset \mathbb{R}^d$, where |P| = n there exists a WSPD of size $O(n\epsilon^{-d})$ and one can compute it in $O(n \log n + n\epsilon^{-d})$ time.

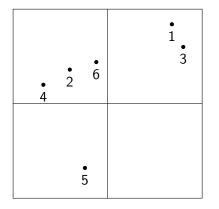
Theorem

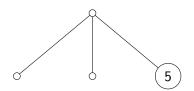
For $\epsilon > 0$, $P \subset \mathbb{R}^d$, where |P| = n there exists a WSPD of size $O(n\epsilon^{-d})$ and one can compute it in $O(n \log n + n\epsilon^{-d})$ time.

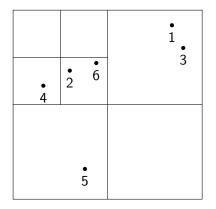
- Size of the WSPD is the number of pairs
- Build a compressed quadtree, $O(n \log n)$
- Recurse down from the root to find well separated pairs, $O(n\epsilon^{-d})$

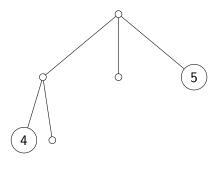


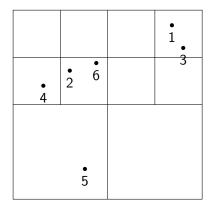
0

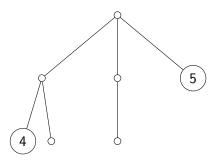


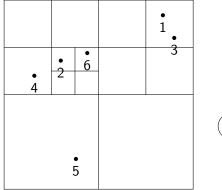


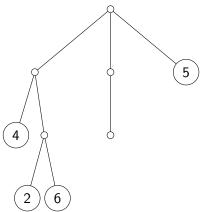


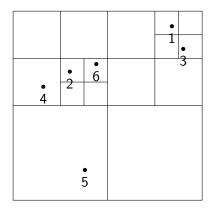




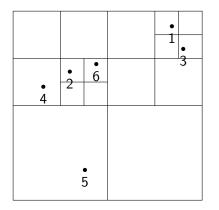


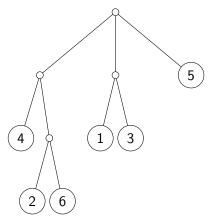


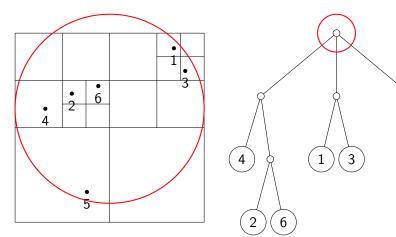




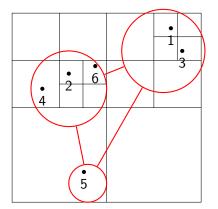


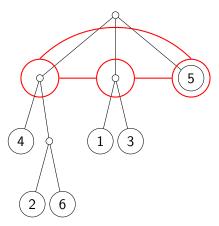


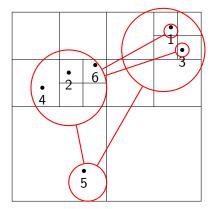


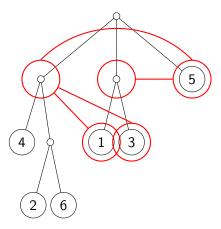


5

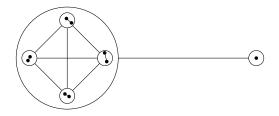






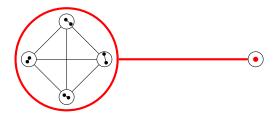


WSPD usage



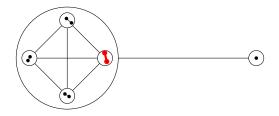
- A point *p* is contained in several pairs
- These pairs form a clustering of P with respect to p
- The WSPD efficiently stores a clustering with respect to every point

WSPD usage

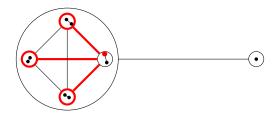


- A point *p* is contained in several pairs
- These pairs form a clustering of P with respect to p
- The WSPD efficiently stores a clustering with respect to every point

WSPD usage

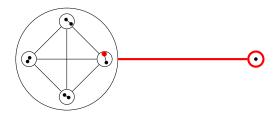


- A point *p* is contained in several pairs
- These pairs form a clustering of P with respect to p
- The WSPD efficiently stores a clustering with respect to every point



- A point *p* is contained in several pairs
- These pairs form a clustering of P with respect to p
- The WSPD efficiently stores a clustering with respect to every point

WSPD usage



What does this mean?

- A point *p* is contained in several pairs
- These pairs form a clustering of P with respect to p
- The WSPD efficiently stores a clustering with respect to every point

• Clustering with respect to non VPL points?

• Clustering with respect to non VPL points? -query WSPD

- Clustering with respect to non VPL points? -query WSPD
- Speed?

- Clustering with respect to non VPL points? -query WSPD
- Speed? -theoretical: $O(e^{-d} \log n)$

- Clustering with respect to non VPL points?
 -query WSPD
- Speed?
 - -theoretical: $O(\epsilon^{-d} \log n)$
 - -measured: 4x faster than Lightcuts

- Clustering with respect to non VPL points? -query WSPD
- Speed?
 -theoretical: O(e^{-d} log n)
 -measured: 4x faster than Lightcuts
- Pure spatial clustering \rightarrow lighting specific WSPD

- Clustering with respect to non VPL points? -query WSPD
- Speed?
 - -theoretical: $O(e^{-d} \log n)$ -measured: 4x faster than Lightcuts
- Pure spatial clustering \rightarrow lighting specific WSPD -ongoing work

Preprocess, given a set of VPLs

- Create compressed quadtree on the VPLs
- Create WSPD pairs

Preprocess, given a set of VPLs

- Create compressed quadtree on the VPLs
- Create WSPD pairs

Render a pixelpoint, q

- Query the WSPD for (A_i, B_i) st. $q \in A_i$
- Return the clusters, $\{B_i\}$

Preprocess, given a set of VPLs

- $\bullet\,$ Create compressed quadtree on the VPLs
- Create WSPD pairs

Render a pixelpoint, q

- Query the WSPD for (A_i, B_i) st. $q \in A_i$
- Return the clusters, $\{B_i\}$

 $\left. \right\} O(n \log n)$

Query for the point \boldsymbol{q}

Query for the point \boldsymbol{q}

• Take the closest point to q, denote it by p

Query for the point \boldsymbol{q}

- Take the closest point to q, denote it by p
- Let $\lambda = dist(p,q)$

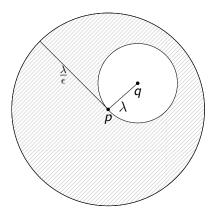
Query for the point q

- Take the closest point to q, denote it by p
- Let $\lambda = dist(p,q)$
- Return the pairs, (B_i) , of p such that $dist(p, B_i) > \frac{\lambda}{\epsilon}$

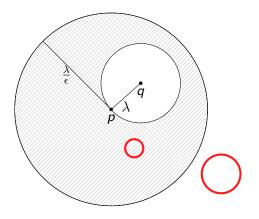
Query for the point q

- Take the closest point to q, denote it by p
- Let $\lambda = dist(p,q)$
- Return the pairs, (B_i) , of p such that $dist(p, B_i) > \frac{\lambda}{\epsilon}$
- For the pairs with $dist(p, B_i) < \frac{\lambda}{\epsilon}$ check for well-separatedness and refine if necessary

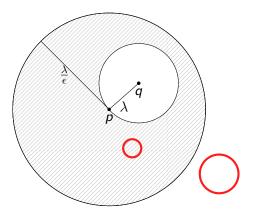
Correctness



Correctness



Correctness



Lemma I

For any $q \in \mathbb{R}^d$ and its nearest neighbour p, the well separated pairs of p are also well separated from q if $dist(p, B_i) > \frac{dist(p,q)}{\epsilon}$ and of those lying closer there are at most O(1).

Complexity of the query phase

• Nearest neighbor

Complexity of the query phase

• Approximate nearest neighbor, $O(\log n)$ expected time

Approximate nearest neighbor

For any $p \in \mathbb{R}^d$ its parent node in a compressed quadtree can be found in $O(\log n)$ time using a finger tree.

Complexity of the query phase

• Approximate nearest neighbor, $O(\log n)$ expected time

Approximate nearest neighbor

For any $p \in \mathbb{R}^d$ its parent node in a compressed quadtree can be found in $O(\log n)$ time using a finger tree.

Lemma II

The expected distance is $O(\lambda \log \lambda)$ where λ is the distance form the nearest neighbor and Lemma I holds in this case too.

Complexity of the query phase

- Approximate nearest neighbor, $O(\log n)$ expected time
- Refining the pairs, O(1)

Approximate nearest neighbor

For any $p \in \mathbb{R}^d$ its parent node in a compressed quadtree can be found in $O(\log n)$ time using a finger tree.

Lemma II

The expected distance is $O(\lambda \log \lambda)$ where λ is the distance form the nearest neighbor and Lemma I holds in this case too.

Complexity of the query phase

- Approximate nearest neighbor, $O(\log n)$ expected time
- Refining the pairs, O(1)
- Average number of pairs is $O(\epsilon^{-d} \log n)$

Approximate nearest neighbor

For any $p \in \mathbb{R}^d$ its parent node in a compressed quadtree can be found in $O(\log n)$ time using a finger tree.

Lemma II

The expected distance is $O(\lambda \log \lambda)$ where λ is the distance form the nearest neighbor and Lemma I holds in this case too.

Results

On average we have reached about 4x speed up in the rendering phase, with comparable quality

Results

On average we have reached about 4x speed up in the rendering phase, with comparable quality

 $16 \times euclidian difference$

- Improve clustering quality
- Introduce light measure, light specific WSPD
- Model the geometry of the scene
- VPLs on surfaces \rightarrow size is $O(n\epsilon^{-(d-1)})$

- Rendering scenes with VPLs
- Lightcuts method for clustering
- Novel WSPD based algorithm for clustering

Thank you!

Bibliography

🛸 S. Har-Peled

Geometric Approximation Algorithms Amer Mathematical Society, '11.

B. Walter et al

Lightcuts: a scalable approach to illumination ACM Trans. Graph., 31(4):59:159:11, July '12.

G. Wang et al

Efficient search of lightcuts by spatial clustering, SIGGRAPH Asia '11 Sketches. December '11

Brian Taylor Image on slide 2

Wikipedia

Image on slide 3,4