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Photorealistic rendering
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Rendering a scene

Scene

objects (geometry, color)

light sources

Rendering the image

shoot a ray from the camera
through a pixel

determine the color of the
first hit point →
shoot other rays to light
sources
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Rendering equation

Color for a surface point [J. T. Kajiya, SIGGRAPH ’86]

Lo(x , ωo) = Le(x , ωo) +

∫
Ω
f (x , ωi , ωo)Li (x , ωi ) cos θidωi

=

∫
Ω
f (x , ωi , ωo)Lo(hit(x , ωi ), ωi ) cos θidωi

Approximating the solution with path tracing
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VPL

Simulate indirect
illumination

Place virtual point lights
(VPLs)

Shoot rays from original
lights
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VPL

With S , the set of VPLs, the rendering equation

L(p, ωo) =
∑
i∈S

Vi (p)f (p, ωi , ωo)IiGi (p, ωi )

Good solution with ≈ 100000 VPLs

Very expensive to calculate visibility

How to speed it up?

Cluster similar lights into groups and treat them as single lights
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Lightcuts [Walter et al., ACM Trans. Graph. ’05]

Preprocess

Single VPLs

Agglomerative clustering
sim(a, b) =
I (dist(a, b) + direction(a, b))

Query for one pixel

Descend from the root
until optimal clustering (cut)
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Weakness

Agglomerative clustering may be slow

For each pixel we re-evaluate the optimal cut

Too expensive

Common cuts [Wang et al., SIGGRAPH Asia ’11 ]

Our intuition

Structure that effectively captures all the different cuts
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Well-separated pair

Definition

Two point sets, P and Q are well-separated for a fixed ε > 0 if

max(diam(P), diam(Q)) < ε · dist(P,Q)

P

Q

dist

Bounds the angles and distances which is important for lights
This enables us to bound the error of light clustering
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WSPD [Callahan et al.,JACM ’95]

Definition

A well-separated pair decomposition (WSPD) of a point set, P is a set of
pairs

W = {(A1,B1) , . . . (As ,Bs)} , Ai ,Bi ⊂ P

such that:

1 for ∀p, q ∈ P there exists exactly one i such that (p, q) ∈ (Ai ,Bi )

2 Ai ,Bi is well-separated for ∀i

Example: W = {(p, q)| p, q ∈ P}, size of O(n2)
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WSPD

Theorem

For ε > 0, P ⊂ Rd , where |P| = n there exists a WSPD of size O(nε−d)
and one can compute it in O(n log n + nε−d) time.

Size of the WSPD is the number of pairs

Build a compressed quadtree, O(n log n)

Recurse down from the root to find well separated pairs, O(nε−d)
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WSPD algorithm

1

2

3

4

5

6

5

4

2 6 1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6 1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6 1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6 1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6

1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6 1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6

1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6

1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6

1 3

1 3

12/22



WSPD algorithm

1

2

3

4

5

6 5

4

2 6

1 3

1 3

12/22



WSPD usage

What does this mean?

A point p is contained in several pairs

These pairs form a clustering of P with respect to p

The WSPD efficiently stores a clustering with respect to every point
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Our WSPD application

Use WSPD on VPLs but three questions arise

Clustering with respect to non VPL points?

-query WSPD

Speed?

-theoretical: O(ε−d log n)
-measured: 4x faster than Lightcuts

Pure spatial clustering → lighting specific WSPD

-ongoing work
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Our algorithm

Preprocess, given a set of VPLs

Create compressed quadtree on the VPLs

Create WSPD pairs

Render a pixelpoint, q

Query the WSPD for (Ai ,Bi ) st. q ∈ Ai

Return the clusters, {Bi}
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Query the WSPD

Query for the point q

Take the closest point to q, denote it by p

Let λ = dist(p, q)

Return the pairs, (Bi ), of p such that dist(p,Bi ) >
λ
ε

For the pairs with dist(p,Bi ) <
λ
ε check for well-separatedness and

refine if necessary
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Correctness

q

p
λ

λ
ε

Lemma I

For any q ∈ Rd and its nearest neighbour p, the well separated pairs of p
are also well separated from q if dist(p,Bi ) >

dist(p,q)
ε and of those lying

closer there are at most O(1).
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Complexity - query

Complexity of the query phase

Nearest neighbor

Refining the pairs, O(1)

Average number of pairs is O(ε−d log n)

Approximate nearest neighbor

For any p ∈ Rd its parent node in a compressed quadtree can be found in
O(log n) time using a finger tree.

Lemma II

The expected distance is O(λ log λ) where λ is the distance form the
nearest neighbor and Lemma I holds in this case too.
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Results

On average we have reached about 4x speed up in the rendering phase,
with comparable quality

VPL WSPD
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Ongoing work

Improve clustering quality

Introduce light measure, light specific WSPD

Model the geometry of the scene

VPLs on surfaces → size is O(nε−(d−1))
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Summary

Rendering scenes with VPLs

Lightcuts method for clustering

Novel WSPD based algorithm for clustering

Thank you!
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